Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats.
نویسندگان
چکیده
Dietary resistant starch (RS), as a high amylose maize starch (HAMS), prevents dietary protein-induced colonocyte genetic damage in rats, possibly through the short-chain fatty acid (SCFA) butyrate produced by large bowel bacterial RS fermentation. Increasing butyrate availability may improve colonic health and dietary high amylose maize butyrylated starch (HAMSB) is an effective method of achieving this goal. In this study, rats (n = 8 per group) were fed diets containing high levels (25%) of dietary protein as casein with 10 or 20% dietary HAMSB and HAMS. Colonocyte genetic damage was measured by the comet assay and was 2-fold higher in rats fed 25% protein than those fed 15% protein (P < 0.001). Concurrent feeding of 25% protein and either HAMS or HAMSB lowered genetic damage significantly relative to a low-RS high-protein control diet. The 20% HAMSB diet was twice as effective as 20% HAMS in opposing genetic damage. Large bowel digesta butyrate was significantly increased in rats fed 20% compared with 10% HAMS and in rats fed 20% compared with 10% HAMSB. The levels were significantly higher in the HAMSB groups relative to the HAMS groups. Hepatic portal venous SCFA were higher in rats fed HAMS and highest in those fed HAMSB. Caecal digesta ammonia was increased by HAMSB and correlated negatively with digesta pH. Ammonia is cytotoxic and lower digesta pH could lower its absorption, possibly contributing to lower genetic damage. Delivery of butyrate to the large bowel by HAMSB could reduce colorectal cancer risk by preventing diet-induced colonocyte genetic damage.
منابع مشابه
Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet123
Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) ...
متن کاملButyrylated starch affects colorectal cancer markers beneficially and dose-dependently in genotoxin-treated rats
Population studies suggest that greater dietary fiber intake may lower colorectal cancer (CRC) risk, possibly through the colonic bacterial fermentative production of butyrate. Butyrylated starch delivers butyrate to the colon of humans with potential to reduce CRC risk but high doses may exacerbate risk through promoting epithelial proliferation. Here we report the effects of increasing dietar...
متن کاملDifferential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch.
Feeding higher levels of dietary animal protein (as casein or red meat) increases colonic DNA damage and thins the colonic mucus barrier in rats. Feeding resistant starch (RS) reverses these changes and increases large bowel SCFA. The present study examined whether high dietary dairy (casein or whey) or plant (soya) proteins had similar adverse effects and whether dietary RS was protective. Adu...
متن کاملHigh red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch.
Human population studies show that dietary red and processed, but not white, meats are associated with increased risk of colorectal cancer but dietary fibre appears to be protective. We examined whether dietary cooked red or white meat had differential effects on colonic DNA damage in rats and if resistant starch (RS), a dietary fibre component, provided protection. Rats were fed diets containi...
متن کاملButyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats
Animal studies show that increasing large bowel butyrate concentration through ingestion of butyrylated or resistant starches opposes carcinogen-induced tumorigenesis, which is consistent with population data linking greater fiber consumption with lowered colorectal cancer (CRC) risk. Butyrate has been shown to regulate the apoptotic response to DNA damage. This study examined the impact of inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 29 11 شماره
صفحات -
تاریخ انتشار 2008